Selecting and Purchasing Tags
As students of migration ecology, we ultimately seek the ability to know everything about all individuals at all times. Unfortunately, the technology required to do this for most flying migratory animals, particularly the smallest bodied ones, does not exist. Therefore, biologists have to use a combination of complementary tools such as tracking-based geolocators, GPS and GSM, GPS and Geolocation data loggers, as well as isoptopic, genetic, and good old bird banding/ringing to discover the complete life histories of migratory animals. While often viewed as having competing value, these tools are undeniably complementary, and researchers need to employ the best tool for the job given the specific questions and study system in mind.
What is most unique about Motus is that it provides an opportunity to track the widest variety of the smallest animals possible, today, at local, regional, or hemispheric scales depending on the location and species in question. And best of all, almost anyone can get involved in one way or another – Motus is the ultimate hands-on community science project.
Another important differentiation between automated radio telemetry and other technologies available is that the temporal precision of the data can be much greater with radio telemetry as tags can repeat their signals as quickly as every 2 seconds. This extremely high temporal precision can allow for exceptionally detailed examinations of an animals behavior, movement patterns, direction and speed of flight.
The selection of specific tag type will largely depend on the spatial temporal scale of your study as well as your study species and geography.
The study location may largely determine what type of data you can expect, and which tags to use. When setting up your study, it’s important to consider how your tags may be detected by receivers in your area of interest. One tactic employed by the Northeast Motus Collaboration is to build a receiver ‘fence’ over a geographic area such that any tagged animal passing through it will get detected. In Ontario, where many more stations are available, there is a grid of stations (or series of fences) to allow for better spatial resolution of movements. In the end, you will need to decide what works best for your region based on migratory flyways, foraging locations, your goals, funding, and the location of nearby receivers.
Go to the receivers map to see all currently active receivers, what frequency they operate on and which type of tags they can detect. Keep in mind that these receivers have been deployed by various researchers who check their stations at different times. It’s helpful to check the ‘last data processed’ to get an idea of how often these stations get checked – you don’t want to be stuck waiting for a station you don’t own to get checked! In addition, stations that haven’t been checked in a long time (6 months to a year) may be in various states of disrepair so it’s also best not to rely on these stations before contacting the project manager.